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Summary 
 
One of the main goals of the European project CASCADE was to improve our understanding 
of the degradation of drylands which occupy 41% of the land area on Earth. Drylands are 
classical examples of ecosystems that may respond in abrupt, unexpected and often 
irreversible ways to gradual changes in external conditions, such as climate or land use 
changes [1–3]. Such abrupt responses have been referred to as catastrophic shifts in the 
ecological literature and can result in a reduction of the biological and, hence economic, 
potential of the land to support human populations, livestock and wild herbivores [3,4]. 
Because drylands support more than 38% of the human population, a fundamental 
understanding of their degradation process is crucial to define strategies to predict and 
prevent their degradation. To contribute to this goal, CASCADE combines empirical studies 
with the development of mathematical models, informed and improved by the empirical 
studies, to investigate how Mediterranean drylands cope with various levels of environmental 
stress.  
 
A first deliverable (D6.1) presented the models developed in WP6 (Task 1 of the DOW), how 
the additional ecological mechanisms included in these models affected the response of the 
ecosystem to stress (Task 2 of the DOW), and focused specifically on identifying the 
conditions that favored the emergence of catastrophic shifts at the ecosystem scale.  
Besides contributing to the general understanding of dryland dynamics and resilience, a 
crucial objective of the CASCADE project was to identify indicators of degradation in 
drylands. Previous theoretical studies have suggested the existence of generic indicators based 
on a phenomenon called ‘critical slowing down’ that occur in a wide class of systems when a 
critical threshold is approached. Additionally, indicators related to the spatial structure of the 
system have been proposed (e.g. patch size distribution, Flowlength). We use the term generic 
early-warning signals to refer to these two types of indicators. In this deliverable, we focus on 
these generic early-warning signals, which are promising indicators in the case where 
ecosystems exhibit possible catastrophic shifts, and we report on the progress that have been 
made regarding these indicators in CASCADE. 
One of the main contributions of WP6 consisted in reviewing the generic early-warning 
signals currently available in the literature, testing their trends (in space and time) as an 
ecosystem is approaching a tipping point, and providing codes and information about these 
indicators to promote their broad use. We tested the limits of these indicators and identified 
conditions under which their signal can be blurred. In particular, our results highlight the 
importance of taking into account the characteristics of the main pressure at play (e.g. spatial 
component of grazing, intensity of rainfall events). In addition, new indicators were identified 
in the theoretical models developed in CASCADE, which can be added to the indicator 
toolbox and further evaluated and tested in future projects. Quantification of the indicators 
based on the spatial structure of the vegetation in dryland field data suggests that patch-size 
distributions can successfully reflect non-linear changes in dryland functioning and support 
the use of vegetation patterns as functional indicators in drylands. 
 
Taken together, when quantified on increasingly available spatio-temporal dryland data sets, 
the indicator toolbox developed in WP6 could contribute to improve our ability to monitor 
degradation in drylands and thereby help set up effective strategies to prevent desertification 
before its onset (see CASCADE WP7 and WP8). 
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1. Introduction 
 
 
 Some ecosystems respond abruptly to small changes in environmental conditions, in 
which case ecosystems may shift to an undesired, and sometimes irreversible, state once a 
threshold of environmental condition, or tipping point, is passed [5]. A classic example of 
such catastrophic shift is the desertification of drylands (Fig. 1A; [3]). Despite the possible 
ecological and economic detrimental consequences of such ecosystem shifts, the conditions 
under which ecosystems exhibit abrupt, rather than gradual, responses to smooth changes in 
external conditions are not fully understood yet. Moreover, the prediction of upcoming 
ecosystem shifts before their occurrence would be extremely valuable to prevent them, but 
remains a challenge. 
 
Drylands occupy 41% of the land area on Earth and support more than 38% of its human 
population [4]. Severe ecosystem degradation has already occurred in about 10–20% of 
drylands, and its consequences affect about 250 million people [3]. These values are likely to 
increase with climate change and current rates of human population growth [4,6]. 
Understanding and predicting how drylands respond to these ongoing environmental changes 
is extremely important for global sustainability [7], but challenging owing to the complex, 
dynamic interactions that exist among multiple drivers and ecosystem processes.  
 
Within WP6, we developed a number of dryland vegetation models, starting from existing 
dryland models and sequentially including additional ecological mechanisms thought to be 
relevant for drylands' ability to cope with increasing pressures (Task 1 of the DOW). These 
mechanisms include modeling more realistic grazing pressures, modelling the effect of fire, 
taking the variability of the external pressure (rainfall) into account, incorporating different 
types of feedbacks such as erosion feedbacks known to be important for dryland functioning, 
taking different plant functional groups into account as a first step into taking more species 
characteristics into account (see CASCADE D6.1). 
  
These dryland models were analyzed within WP6 to assess the importance of key ecological 
mechanisms for dryland dynamics and resilience (Task 2 of the DOW). Our model results 
highlight the importance of the role of the spatial component of external pressures (see §2.1 in 
CASCADE D6.1; [8]), demographic stochasticity (see §3.2.5 in CASCADE D6.1; [9]), 
rainfall intermittency and rate of environmental change (see §2.2.1, §2.2.2, §3.2.4 in 
CASCADE D6.1; [10–12]), the way species interact with each other (facilitation/competition) 
(see §2.2.1, §2.2.2, §3.2.1, §3.2.2, §3.2.3, §3.2.4, §3.2.5 in CASCADE D6.1; [9–15], and the 
relevance of different types of ecological feedbacks (see §2.2.2, §3.1 in CASCADE 
D6.1;[10,16]) for our understanding of the species composition and the dynamics of dryland 
ecosystems. 

In particular our models can exhibit alternative stable states, and thereby possible shifts, 
between these alternative states, because of the presence of positive feedback loops between 
the different ecosystem components [5,17]. This means that for a range of conditions the 
ecosystem can be in one of two possible ecosystem states, for example one with high 
vegetation cover (Fig. 1A left picture) and another with low or no vegetation cover (Fig. 1A 
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right picture). In such an ecosystem with two alternative stable states, referred to as a bistable 
system, small changes in environmental conditions lead to gradual ecosystem responses until 
a threshold, or tipping point (black dots in Fig. 1C), is reached at which the ecosystem shifts 
abruptly from one ecosystem state to a radically different one (orange and green arrows in 
Fig. 1C). These shifts are typically difficult to reverse once they have happened, if the 
recovery is possible at all. Such abrupt ecosystem responses are known as catastrophic shifts. 
 
 

	

Figure 1: Ecosystem response to gradual change in environmental stress. A: picture of a 
Mediterranean dryland ecosystem along a degradation gradient (from low stress in the left to higher 
stress on the right; pressure = grazing in this case). Photo credit: F.D. Schneider. Some ecosystems 
respond in a continuous, gradual and reversible way to increasing pressure (B), while others respond 
in an abrupt and unexpected manner (C). Solid lines represent the stable state of the ecosystem (e.g. 
vegetation cover in the case of Mediterranean drylands), black dots represent tipping points, and 
dashed lines represent the unstable state (the limit between the attraction basins of the stable states). 
In the case of the discontinuous ecosystem response of C, there is a range of pressure for which the 
ecosystem can be in either of two possible states (bistability area, in grey, between the tipping points) 
depending on the history of the system. In such a case, we are interested in identifying indicators of 
approaching tipping points (e.g. distinct behavior of some metric that would occur just before the 
collapse of the upper ecosystem state into the lower one, i.e. just before the ecosystem degrades along 
the orange arrow).    

 
If drylands can tip unexpectedly to a degraded state due to environmental changes, it is crucial 
to be able to detect such response in advance to prepare for it or avoid it. There are a number 
of indicators of ecosystem degradation available in the literature. For drylands, the probably 
most common one is the total amount of vegetation cover [18]. However, this indicator would 
typically fail in case a dryland is approaching a tipping point to desertification, because then 
the ecosystem abruptly shifts to a desert when it still has a relatively high vegetation cover 
(see e.g. [19,20] for discussions). In the last two decades, theoretical studies have suggested 
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the existence of generic early-warning signals that may indicate if a tipping point is 
approached in a wide range of systems (see [21–23] for reviews). Additionally, in drylands, 
indicators related to the spatial structure of the vegetation cover have been proposed [24–26]. 
One of the core objectives of the European project CASCADE is to contribute to this body of 
research by identifying and testing indicators of degradation specifically for Mediterranean 
drylands (Tasks 3 and 4 of the DOW). Therefore, we used the models developed in 
CASCADE WP6 (see CASCADE D6.1) to identify signatures (i.e. changes in ecosystem 
characteristics) that occur especially as the ecosystem is approaching a tipping point to a 
degraded state, and defined those as possible indicators of degradations in drylands, i.e. (Fig. 
1C; task 3 of the DOW). We then confronted these model-predicted indicators to data (Task 4 
of the DOW). We present the results of these research projects in this second deliverable of 
WP6, D6.2.  
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2. Identification of the indicators 
 
 

2.1. Generic early warning signals 
 
Theoretical studies have suggested that a number of ‘generic’ indicators could be derived 
based on a phenomenon that appears to be universal prior to bifurcations (i.e. points at which 
the stability of a systems changes, such as a tipping point): critical slowing down [27]. 
Critical slowing down means that the time needed for a system to return back to equilibrium 
upon a small disturbance gets longer as the system approaches a bifurcation point (Fig. 2b-c). 
In other words, closer to a bifurcation, the system has a harder time recovering from 
perturbations, and the capacity of the system to absorb perturbations without shifting to a 
different state decreases. 
 
 
 

	
 

Figure 2: Generic early warning signals. Far from the tipping point resilience is high (b): the 
ecosystem lies in a steep basin of attraction. Small disturbances are damped by high recovery rates 
back to equilibrium. Rate to recover from perturbations is high (b), the dynamics are characterized by 
low variance (d), and low correlation between subsequent states (d). Close to the tipping point 
resilience is low (c): the ecosystem lies in a less steep basin of attraction. Rate to recover from 
perturbations is low (c), the dynamics are characterized by high variance (e), and high correlation 
(e). Figure modified from [28]. 
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Critical slowing down has direct statistical signatures that have led to the definitions of 
generic early-warning signals of ecosystem degradation [21]. First, critical slowing down can 
be assessed by measuring the recovery rate of the system upon a disturbance (which should 
decrease as a system approaches a bifurcation point) [29] (Fig. 2b-c). Second, slowing down 
leads to an increase in variance prior to a tipping point: the state of the ecosystem should 
fluctuate more widely around its equilibrium [30] (Fig. 2d-e). Third, there is an increase in 
autocorrelation: the state of the ecosystem resembles more its previous state when it is close 
to a bifurcation point [31] (Fig. 2d-e).  
 
In sum, theoretical models predict that recovery rate, variance and autocorrelation are 
statistical properties of the system dynamics that change in predictable ways prior to 
bifurcation points in general, and tipping points more specifically.  
 
The generic early-warning signals have been developed and tested in a number of models 
(e.g. [32]). In harsh environments such as drylands, recruitment of woody plants often 
depends on nurse plants that ameliorate stressful conditions and facilitate the establishment of 
seedlings under their canopy. For example, C. Xu, S. Kéfi and colleagues [33] used an 
individual-based model and demonstrated that these facilitative interactions may cause a 
treeless and a woodland state to be alternative stable states on a landscape scale if nurse plant 
effects are strong and if the environment is harsh enough to make facilitation necessary for 
seedling survival (Fig. 3A). A corollary is that under such conditions, environmental change 
can bring drylands to tipping points for woody plant encroachment (path 4-3-1 in Fig. 3A) or 
woodland collapse (path 1-2-4 in Fig. 3A). We showed that the proximity of tipping points 
can be announced by the generic early-warning indicators, i.e. by slowness of recovery of 
woody vegetation cover from small perturbations (because of critical slowing down; Fig. 3B, 
C) as well as by elevated temporal and spatial auto-correlation and variance (Fig. 3D-G).  
 
 
The genericity of early warning signals 
 
Most studies on the generic early-warning signals had initially focused on models exhibiting 
tipping points and catastrophic shifts, and it was unclear how these indicators behaved in 
systems approaching other types of bifurcations. In particular, it was unclear whether the 
early-warning signals were specific to catastrophic shifts or whether they could also occur in 
cases of abrupt but reversible ecosystem responses. In the context of CASCADE WP6, we 
tested the behavior of the generic early-warning signals as a model system approached 
different types of bifurcations [34]. 
We found that all indicators showed consistent patterns for a variety of bifurcations. In 
particular, we found that the generic early-warning signals were not specific to catastrophic 
bifurcations but also preceded non-catastrophic transitions [34]. The generic early-warning 
signals can generally be detected in situations where a system is slowing down, i.e. becoming 
increasingly sensitive to external perturbations, independently of whether the impeding 
change is catastrophic or not.  
 
These results highlight that slowing down and its statistical signatures can generally be used 
as indicators of degradation, also in systems where we have no reason to expect catastrophic 
transitions. Our results also imply that indicators specific to catastrophic shifts are still 
lacking.  
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Figure 3: A. Change in woody cover as a function of environmental harshness. As harshness 
increases, the woodland collapses catastrophically into a treeless state (path 1-2-4). After a collapse, 
a decrease in environmental harshness can lead to an abrupt recovery of the woody vegetation 
following the path 4-3-1. The ecosystem therefore exhibits two tipping points located around point 2 
(woodland collapse tipping point) and point 3 (woody encroachment tipping point). B-C: The recovery 
rate of the ecosystem upon small perturbations slows down towards both tipping points (dashed lines). 
D-G: Temporal indicators of critical slowing down. Variance (standard deviation, D-E) and temporal 
correlation (lag-1 autoregressive coefficient, AR1, F-G) in simulated time series rise towards tipping 
points (dashed lines) for a shift from high to low woody cover (woodland collapse) as well as for a 
shift from low to high woody cover (woody encroachment). Figure modified from [33]. 

	
 

2.2. Spatial generic early warning signals 
 
Indicators specifically based on spatial information 
 
Studies have shown that slowing down in space takes place in an analogous way as slowing 
down in time [35,36]. Spatial variance and spatial correlation between near-neighbors are 
expected to rise as a system is approaching a bifurcation point. However, in models that show 
a strong spatial structure, like drylands, it has been shown that most of the generic early 
warning signals can fail [32]. In such cases, indicators specific to those systems need to be 
developed.  
In drylands, vegetation is characterized by spatial patterns formed by the isolated vegetation 
patches interspersed with bare soil (Fig. 1A). In addition to the spatial generic early warning 
signals, studies have suggested that changes in the spatial vegetation patterns themselves 
could be indicative of environmental deterioration in semi-arid ecosystems [24,26]. In 
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particular, the shape of the vegetation patches [1,37] and the distributions of vegetation patch 
sizes could indicate that an ecosystem is degrading [25,26].  
 
In the context of WP6, we reviewed these spatial indicators of ecosystem degradation 
suggested by the theoretical literature [23] (early-warning signals and patch-based indicators), 
and we developed a methodological framework for the practical quantification and the 
interpretation of these indicators on real data (Fig. 4). 
 
We developed a statistical toolbox (the earlywarnings package) in the free programming R 
environment whose code is freely available online as well as a webpage aiming at describing 
and explaining the various indicators (in time and space) and their theoretical foundation, 
giving some concrete examples of case studies and references from the literature (see §5 of 
this deliverable for more information).  
 

 

	
 

Figure 4: Flow chart of the analyses to perform on a spatial data set to quantify indicators of 
degradation along stress gradients. Figure from [23].  

	
	

2.3. Refining the understanding and use of 
indicators  

 
 
Patch-based indicators and spatial stressors 
 
The theoretical foundations of early warning signs of catastrophic shifts had so far assumed 
that pressures on ecosystems distribute homogeneously in space. While this may be valid for 
some pressures, it is most certainly not true for others such as livestock grazing, which is not 
only a major human supply factor, but also a primary trigger of desertification. In CASCADE 
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WP6, F.D. Schneider and S. Kéfi developed a dryland vegetation model including grazing 
and its spatial component (see CASCADE D6.1; [8]), and we investigated the behaviour of 
the spatial indicators of degradation in this model.  
 
Our model analysis shows that spatially-explicit grazing disrupted patch growth and put even 
apparently 'healthy' drylands under high risk of catastrophic shifts (Fig. 5). Our study 
highlights that the spatial indicators of degradation can fail in ecosystems where the pressure 
is spatially heterogeneous, such as grazed drylands. Our results may very well generalize to 
other ecosystems exhibiting self-organized spatial patterns where a spatially-explicit pressure 
disrupts pattern formation. 
 
 

	
 

Figure 5: Landscapes classified based on the cumulative patch size distribution of the vegetation (i: 
full cover; ii: up-bent power law with spanning clusters; iii: pure power-law; iv: down-bent power 
law; v: desert) along gradients of environmental and grazing pressures. Note that at high grazing 
pressure, a vegetation collapse was not preceded by down-bent power laws. Figure adapted from [8]. 

	
  



 
 

 
 

13 

 
Periodic patches and patch adaptation in response to environmental changes 
 
In WP6, Koen Siteur, Max Rietkerk and colleagues [38] studied a simplified vegetation 
reaction-diffusion-advection model producing periodic vegetation patterns. Model studies 
revealed that patterned ecosystems may respond in a non-linear way to environmental 
changes, meaning that gradual changes can lead to sudden desertification. In Siteur et al. [38] 
we studied this response through a novel stability analysis of patterned vegetation states. We 
found that, besides direct critical transitions through decreased rainfall, patterned vegetation 
states may also adapt, depending on the rate of environmental change and the amount of 
noise. Rapid environmental change and lack of noise resulted in a drastic critical transition 
(top right panel), while patterns could adapt in the case of slow environmental change (top left 
panel). In the model, the vegetation patterns adapted to environmental change in two ways: 1) 
by adapting biomass while the wave number of the periodic patches remained the same and 2) 
by adapting wave numbers. We were able to construct so-called ‘Busse balloons’, showing 
the surface in parameter planes for which stable patterned vegetation states can be found (grey 
area). These findings shed a more nuanced light on the earlier suggestions that regular 
patterns in those systems would indicate bistability and proximity to catastrophic shifts 
[24,37]. Indeed, these model results suggest that ecosystems may adapt and catastrophic shifts 
may be avoided, if environmental changes are sufficiently slow. 
 
 
Including rainfall intensity  
 
How annual and seasonal rainfall volumes in arid and semiarid regions will change in the 
coming decades is subject to much uncertainty, according to global climate model projections. 
In contrast, projections of changes in rainfall intensity show strong trends. Rainfall intensity 
has an important impact on spatial infiltration patterns of water in patchy arid ecosystems 
[39,40], and it is unknown if and exactly how the projected changes in rainfall intensity are 
going to affect the productivity and functioning of patterned semiarid ecosystems. 
 
In WP6, K. Siteur, M.G. Rietkerk and colleagues [41] performed a model analysis to address 
that question and concluded that projected increases in rainfall intensity could induce and 
enhance alternative stability of semiarid ecosystems. We also found that under certain 
conditions both an increase and a decrease in mean rainfall intensity could push the system 
over a critical threshold, resulting in a regime shift to a bare desert state. This finding was 
attributed to the fact that water can be lost from the system in two ways. During high intensity 
rain events, a fraction of the water flows through the vegetation bands and is lost as runoff, 
while during low intensity events a large portion of the water infiltrates in the bare interbands, 
where it is less available to plants and can eventually be lost due to soil evaporation and 
percolation. 
 
 
This study suggests that considering rainfall intensity as a variable may help in assessing the 
proximity to regime shifts in patterned semiarid ecosystems, and that monitoring losses of 
resources through runoff and bare soil infiltration could be used to determine ecosystem 
resilience.  
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2.4. Developing new, additional indicators 

 
 
In addition to the early-warning signals and the patch-based indicators, new indicators were 
also suggested in CASCADE, which are hereafter presented (see Table 1 for an overview of 
all these indicators).  
 
Hydrologically-based indicators: Flowlength (connectivity-based indicators) 
 
Vegetation cover and pattern, and therefore the bare-soil connectivity, largely determine 
runoff and thereby the potential of the ecosystem to conserve (or leak) resources such as 
water, soil and nutrients. An indicator of degradation based on bare-soil connectivity was 
developed, referred to as Flowlength [42]. Flowlength measures the connectivity of bare-soil 
areas in a given landscape (by calculating the average of the runoff pathway lengths from all 
the cells in the system), and thereby estimates the potential of the landscape to lose resources. 
Flowlength assumes that bare-soil areas behave as sources of runoff and sediments that are 
trapped by downslope vegetated areas, which behave as sinks of resources. 
 
In the context of WP6, A.G. Mayor and colleagues [16] modeled the effect of landscape 
resource loss (estimated with Flowlength) on plant establishment in a dryland vegetation 
model. Our model analysis showed a non-linear inverse relationship between bare soil 
connectivity (here Flowlength) and vegetation cover. This means that if bare-soil connectivity 
increases above certain values (for example because of cover loss), a disproportional loss of 
resources would take place, greatly limiting plant establishment. This results in a positive 
feedback which accelerates the shift of the ecosystem into a degraded state (CASCADE D6.1; 
[16]). In other words, considering the effect of bare-soil connectivity on vegetation 
recruitment increases the probability of catastrophic shifts in dryland.  
Our results further suggest a higher sensitivity of the bare-soil connectivity index (Flowlength 
index) to changes in the spatial organization of the vegetation during the transition to a 
degraded state, in comparison with bare-soil (or vegetation) cover, which shows a rather 
linear evolution during this transition. This means that bare-soil connectivity could be a better 
indicator of degradation that bare soil.  
 
Our study suggests that changes in vegetation pattern and associated hydrological 
connectivity may be more informative early-warning indicators of dryland degradation than 
changes in vegetation cover. An acceleration of bare-soil connectivity observed in spatially-
explicit time-series data may therefore provide an early warning of imminent shift.  
 
 
Network-based indicators 
 
In WP6, Max Rietkerk and collaborators investigated a vegetation model that exhibits a 
catastrophic shift to desertification, and translating spatio-temporal data (i.e. a simulated field 
of vegetation biomass) into a network of interactions [43]. A network is defined by two sets of 
objects, the so-called nodes, and the set of their mutual connections, namely their links.  
The nodes were defined as the biomass grid cells of the discretized model. To define the links 
between the nodes, the zero-lag temporal correlations between the biomass time series at the 
different nodes were considered. More precisely, two nodes were linked, if the temporal 
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cross-correlation of the time series of two nodes were statistically different. The most basic 
characteristic of a network is called its degree distribution, for which the degree of a node is 
defined as the number of links of the node. We followed the changes in network properties, 
here the mean and the variance of the node degrees, changed along the transition to 
desertification.  
We found that the average and variance degree showed a markedly increase when decreasing 
rainfall in the model, before it collapsed at a certain rainfall rate. Our study suggests that basic 
network characteristics could offer novel indicators for identifying an upcoming 
desertification in semi-arid ecosystems [43]. For instance,  
 
Comparing the performance of these network-based indicators with the generic early-warning 
signals based on variance and autocorrelation, we found that network-based indicators were 
more sensitive to the presence of the transition point. The network based indicators hence 
offer a promising alternative to detect ecosystem degradation.  
 
  



 
 

 
 

16 

Indicator name Description Advantages Drawbacks References 
Cover Percentage of the 

ground covered by 
vegetation 

Easy to understand, 
easy to measure 

Fails in the case of 
ecosystem shift 

[18–20] 

Temporal generic 
indicators 

Temporal variance, 
auto-correlation at 
lag 1 and temporal 
skewness calculated 
on time series of a 
variable of the 
ecosystem state 
(e.g. cover, 
abundance of a key 
species…) 

Works independent 
of the type of 
changes expected in 
the ecosystem (i.e. 
both with 
continuous 
degradation and 
catastrophic shifts) 

Requires to use 
more advanced 
statistical tools (but 
tools freely 
available); 
Requires detailed 
time series of the 
variable 

[21,22] 

Spatial generic 
indicators 

Spatial variance, 
near-neighbour 
correlation and 
spatial skewness 
calculated on 
spatial data (e.g. 
aerial images on 
which vegetation 
abundance or 
presence/absence 
can be estimated in 
space) 

Works independent 
of the type of 
changes expected in 
the ecosystem; 
Only a few spatial 
snapshots in time 
are required to get 
an idea of the trend 
that an ecosystem 
follows through 
time 

Requires to use 
more advanced 
statistical tools (but 
tools freely 
available) 
Requires spatial 
data or maps with 
sufficient resolution  

[21,23] 

Patch-based 
indicators 

Metrics quantifying 
the shapes, sizes, 
distribution of patch 
sizes present in the 
landscape and 
power law range 
(PLR, i.e. the 
proportion of the 
distribution that fits 
a power law) 

More powerful than 
generic indicators 
for patchy 
landscapes (i.e. 
landscapes with a 
strong spatial 
structure); 
Works independent 
of the type of 
changes expected in 
the ecosystem 

Only works on 
patchy landscapes; 
Requires to use 
more advanced 
statistical tools (but 
tools freely 
available) 
Requires spatial 
data or maps with 
sufficient resolution 

[23,25,26,32] 

Flowlength Metric quantifying 
the connectivity of 
bare-soil areas in 
the landscape, 
which is a proxy for 
how much resource 
can be lost from the 
system.  

More powerful than 
cover for patchy 
landscapes; 
Works independent 
of the type of 
changes expected in 
the ecosystem 

Only works on 
patchy landscapes; 
Requires to use 
more advanced 
statistical tools 

[16,42] 

Network-based 
indicators 

Metrics calculated 
on spatial data after 
transformation 
them into a network 
of interaction. In 
such network the 
mean and variance 
of the node degree 
are followed. 

More powerful than 
generic indicators 
 

Requires to use 
more advanced 
statistical tools 

[43] 

 
Table 1: Table summarizing the different indicators studied in WP6.   
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3. The validation of the indicators  
 
 

The development of early warning signals to detect the onset of regime shifts in marine 
and terrestrial ecosystems has received increasing attention during the last decade. The 
theoretical interest for these indicators has created a novel and promising framework for 
studying tipping points in ecological systems. The challenge, however, is whether these 
indicators can be applied in reality. 
 
To evaluate the indicators, and more precisely the patch-based indicators, as indicators of 
dryland degradation, we used a data set from another European project, BIOCOM, 
coordinated by Fernando Maestre (Madrid, Spain) [44]. This work is part of the Ph.D. thesis 
of Miguel Berdugo, co-supervised by Sonia Kéfi, Fernando Maestre and Santiago Soliveres. 
The database contains vegetation and soil data of 224 drylands from all around the world. For 
each site, the dataset contains the estimated plant cover, the frequency of positive plant-plant 
interactions, 16 soil variables (related to the carbon, nitrogen and plosphorous cycles) 
hereafter called ‘functions’, and the aridity index (AI, precipitation/potential 
evapotranspiration). 
From these sites, we retained for this study those from which we could gather Google EarthTM 
(https://earth.google.com/) or VirtualEarthTM (http://www.bing.com/maps) images good 
enough for visually identifying vegetation patches. The resulting 115 sites used for the 
analyses are located in 13 countries and differ widely in their abiotic (elevation, temperature 
and precipitation) and biotic (vegetation type, cover and number of species) features. 
We used the combination of remote sensing and field data to evaluate the links between 
vegetation cover, patch-size distribution and multifunctionality (the ability of ecosystem to 
provide several soil fertility related services at the same time; it was measured as the average 
Zscore of the 16 soil variables; see [44] for a description of the approach). 
 
We found that the observed vegetation patch-size distributions always fitted heavy-tailed 
distributions with varying levels of curvature (such as in Fig. 5). Distributions showing strong 
curvatures have a relatively low proportion of patch sizes that fit a power law (i.e. a low 
Power Law Range, hereafter referred to as PLR). These curvatures are caused by the lack of 
the largest and/or of the smallest vegetation patches compared to what would be expected in a 
pure power law: PL-like sites whose patch size distribution fits best a power law, and ii) and 
non PL-like sites which had more curved distributions.  
 
Moreover, we found a bimodal distribution of multifunctionality values in our field sites, 
which suggests contrasting multifunctionality states in global drylands. This can be 
interpreted as the existence of two alternative states in multifunctionality in global drylands. 
More specifically, mapping the number and value of estimated alternative states along the 
aridity gradient studied reveals a range of aridity values (between 0.2 and 0.4, meaning that 1-
AI is between 0.6 and 0.8) for which two multifunctionality levels coexist across our sites 
(Figure 7). The type of patch-size distribution was significantly associated with the two 
multifunctionality states observed (PL-like sites in the upper branch and non-PL-like sites in 
the bottom branch).  
 
Changes in patch-size distributions indicate a spatial reorganization of the existing cover, 
which is related to processes influencing the functioning of drylands, such as soil erosion. 
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Modifications in spatial patterns can also reflect important variations in the structure of plant 
communities unrelated to changes in cover. 
 

	
 
Figure 7: Relationship between aridity (x-axis) and multifunctionality (y-axis). Variation of the 
‘stable’ states (i.e. local minima of the stability landscape (black line) along the aridity gradient 
studied for multifunctionality. AI = aridity index (annual precipitation / annual evapotranspiration). 
Contour lines represent the estimated potential energy from which the ‘stable’ states are derived as 
local minima, i.e. blue color represent more stable states and red color represent less stable states. 
Figure from [45]. 
 
 
 
Our results show that while plant cover is the best linear predictor of multifunctionality in 
global drylands, patch-size distributions are better reflecting non-linear changes in this 
variable. Our findings support the use of vegetation patterns as functional indicators in 
drylands, and pave the way for developing effective strategies to monitor desertification 
processes. 
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4. Conclusion 
 

Because of the possibly dramatic consequences of dryland degradation for the livelihood 
of about 250 million people living in drylands, it is of crucial importance to understand why 
and how these ecosystems respond in abrupt, unexpected and often irreversible way to 
gradual external changes as well as to identify indicators of such response. These were key 
research questions addressed within CASCADE WP6.  

In this second deliverable of WP6, we reviewed the advances made in WP6 regarding the 
knowledge and evaluation of currently available indicators in theoretical models of 
degradation for dryland ecosystems (see Table 1 for an overview of those indicators).  

More precisely, within WP6: 
- we reviewed the generic early-warning signals available in the literature – those 

particularly available to drylands (§2.1; [46]), 
- we evaluated and discussed the applicability and limits of these indicators (§2.1, 2.2., 

2.3; [8,33,34,41]), 
- we proposed new indicators (§2.4; [16,43,47]), 
- we tested the patch-based indicators on field data (§3; [45]), 
- we developed and provided codes and information for transmission of these indicators 

(webpage, code R; see upcoming §5). 

We hereafter go through the main results of this deliverable, their implications for 
management and provide some directions for future investigations.  
 
 

4.1. Main results 
 
A number of indicators of ecosystem degradation are currently available in the literature (see 
Table 1 for those studied in WP6). So-called generic early-warning signals are simple metrics 
(return rate after a perturbation, variance, correlation) based on the phenomenon of critical 
slowing down, which occurs when a system approaches a bifurcation point, i.e. a point at 
which the system stability is going to change drastically. These indicators can be quantified 
on both temporal and spatial data. In the case of spatially-structured ecosystems, such as 
drylands, these generic indicators have been shown to be very likely to fail [32], and 
additional indicators, based on the ecosystem spatial structure have been suggested: in 
particular the shape of the vegetation patches and the shape of the patch size distribution.  
 
In WP6, we reviewed these indicators, and proposed a work flow of how to quantify them on 
real data (§2.2; [46]). The code to apply these indicators on ecological data (e.g. aerial images 
of the landscapes) has also been made available (§5).  
 
These indicators were tested in a number of more particular cases, and we identified situations 
in which they are expected to fail. In particular, by comparing their behavior along different 
types of transitions, we showed that they are not specific to catastrophic shifts, but also occur 
along non-catastrophic transitions (§2.1; [34]): they are therefore indicators of ecosystem 
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degradation because their detection points to the fact that the ecosystem is having a harder 
time recovering from perturbations, but they do not indicate what type of transition the system 
is approaching. A model study taking the spatial component of grazing into account (§2.3) 
showed that this mechanism, by affecting vegetation patch growth, affected ecosystem 
resilience (by increasing the probability of catastrophic shifts at high grazing pressures) and 
the efficiency of patch-based indicators at announcing upcoming ecosystem degradation [8]. 
This grazing model analysis warns about the blind use of the patch-based degradation 
indicator without knowing the characteristics of the stressor and their interactions with the 
intrinsic mechanisms of the ecosystem. Another model study focusing on rainfall intensity 
(§2.3), one of the major changes expected in dryland climate in the coming decades, 
suggested that explicitly considering rainfall intensity may help in assessing the proximity to 
regime shifts in patterned semiarid ecosystems, and that monitoring losses of resources 
through runoff and bare soil infiltration could be used to determine ecosystem resilience [41].  
 
A number of studies performed in WP6 additionally proposed new indicators or approaches. 
Using a dryland vegetation model, including erosion feedbacks, Mayor et al. [16] suggested 
that changes in bare-soil connectivity along a degradation gradient (resulting from changes in 
both plant cover and spatial patterns) may be more informative than changes in plant cover as 
early-warning indicators of dryland degradation (§2.4). This is in agreement with recent 
empirical evidence [48]. Moreover, we found that basic network characteristics could offer 
novel indicators for identifying an upcoming desertification in semi-arid ecosystems and that 
the performance of these network-based indicators could be superior to these of the generic 
early-warning signals based on variance and autocorrelation (§2.4; [43]).  
 
Finally, the last task of WP6 was to evaluate these indicators on real data in an attempt to 
validate their use and efficiency. To do this, we used a large-scale data set from another 
European project, BIOCOM, in which we could quantify patch-based indicators on 115 
dryland sites located world-wide and compare them to field-based measurements reflecting 
ecosystem functioning (summarized in a metric called multifunctionality). We found that 
abrupt changes in multifunctionality along an aridity gradient could be reflected by the patch-
size distribution of vegetation. By providing the first link between plant spatial patterns and 
multifunctionality in global drylands, our study provides strong empirical and mechanistic 
support to the use of these patterns as indicators of discontinuous changes in ecosystem 
functioning.  
 
 

4.2. Implications for management 
 
The results of CASCADE WP6 have a number of practical implications in terms of predicting 
dryland degradation: 

- Our results provide support for the use of indicators based on the spatial structure of 
the vegetation cover (patch-size distribution, Flowlength) to assess the ecosystem 
degradation level (§3). 

- Our results nonetheless warn about the need for well identifying the main stressors at 
play in the ecosystem considered (see rainfall and grazing in §2.3) since they can 
affect the type of indicator to follow and their reliability.  

- Our studies have put forward a number of new indicators (Flowlength and network-
based indicators; see Table 1) that need further testing and validation in future studies.  
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Jointly, all those indicators, when simultaneously evaluated and if they all converge in their 
trends, can help identifying the critical point at which measures should be adopted to prevent 
drastic changes in ecological conditions before they happen. These spatial indicators can be 
evaluated on spatio-temporal ecosystem data that are becoming increasingly available through 
e.g. aerial images. 
 
More globally, our results suggest that ecosystems with aridity indices between 0.2 and 0.4 
are especially sensitive to further disturbances [45]. In areas where aridity is expected to reach 
such values in the future [49] or where grazing is rising due to a higher demand in livestock 
products, such increased pressures could force the sites in this sensitive climatic envelope into 
a low multifunctionality state (i.e. degradation). A key result of our study is that these abrupt 
changes in multifunctionality can be reflected by the patch-size distribution of vegetation, 
which is related to critical changes in the way dryland ecosystems are organized.  
 
 

4.3. Outlook 
 
Our results also pave the way for more systematically testing these indicators, in various 
dryland sites (worldwide) and under various drivers, since our model analyses suggest that the 
nature of the driver and its characteristics can affect the efficiency and the reliability of the 
indicators. Steps in that direction have already being initiated in CASCADE WP6 (e.g. 
analyses of spatial images from CASCADE field site by Utrecht University Ph.D. student 
Myrna de Hoop).  
Simultaneously, the statistical tools needed to evaluate these indicators needs to be developed, 
tested and made available so that they can be widely applied. As already mentioned, tools and 
information about them have already been made available by CASCADE WP6 and these 
tools will keep being updated (see §5 for more information).  
A key element currently lacking from the validation of the indicators is a quantitative measure 
of the pressure at play. In the work of Berdugo and colleagues (§3 ; [45]), the indicators of 
ecosystem degradation have been clearly correlated with metrics reflecting ecosystem 
functioning (so-called multifunctionality), but no measure or information about the pressures 
at play in the different field sites available were available. Again, a step in that direction will 
be taken by the upcoming study from Myrna de Hoop since dung counts have been measured 
in the field in that case and can constitute a proxy for the level of grazing pressure. Moreover, 
quantifying anthropogenic pressures is an explicit goal of a newly funded European project on 
desertification, BIODESERT (coordinated by Fernando Maestre).  
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5. Sharing and communicating WP6 

results 
 

	
Accompanying our review of the spatial indicators of degradation currently available in the 
literature [23], we developed a statistical toolbox (“earlywarnings package”) in the free 
programming R environment whose code  is freely available online: 
https://github.com/earlywarningtoolbox/spatial_warnings 
This toolbox allows quantifying all spatial indicators reviewed in [23] on spatial data sets. 
The toolbox is constantly being updated. Alexandre Génin (Ph.D. student in Montpellier with 
Sonia Kéfi) is working on the next version of the code with Sonia Kéfi. This new version will 
be made available in 2017. 
 
With our collaborator Vasilis Dakos, we also set up a webpage aiming at describing and 
explaining the various indicators (in time and space) and their theoretical foundation, giving 
some concrete examples of case studies and references from the literature (Fig. 8):  
http://www.early-warning-signals.org/ 
This webpage will also keep being updated with the latest development regarding spatial 
indicators.  
 

	

	
 

Figure 8: Print screen of the early warning signal webpage. 
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Appendix: List of products from 
WP6 D6.2 
	
 
Kéfi, S., V. Dakos, M. Scheffer, E.H. van Nes, and M. Rietkerk. 2013. Early warning signals 
also precede non-catastrophic transitions. Oikos 122: 641-648. 
 
Mayor A.G., Kéfi S., Bautista S., Rodríguez F., Cartení F., Rietkerk M., 2013. 
Feedbacks between vegetation pattern and resource loss dramatically decrease 
ecosystem resilience and restoration potential in a simple dryland model. 
Landscape Ecology 28:931-942. 
 
Kéfi, S., V. Guttal, W.A. Brock, S.R. Carpenter, A.M. Ellison, V. Livina, D.A. Seekell, M. 
Scheffer, E.H. van Nes, V. Dakos. 2014. Early Warning signals of ecological transitions: 
Methods for spatial patterns. PLoS ONE  9(3): 2097. 
 
Siteur, K., M. Eppinga, D. Karssenberg, M. Baudena, M. Bierkens, and M. Rietkerk. 2014. 
How will increases in rainfall intensity affect semiarid ecosystems? Water Resources 
Research 50(7): 5980-6001 
 
G. Tirabassi, J. Viebahn, V. Dakos, H.A. Dijkstra, C. Masoller, M. Rietkerk and S.C. 
Dekker. 2014. Interaction based early-warning indicators of vegetation transitions. Ecological 
Complexity 19: 148-157. 

Petchey, O.L., M. Pontarp, T.M. Massie, S. Kéfi, A. Ozgul, M. Weilenmann, G.M. Palamara, 
F. Altermatt, B. Matthews, J.M. Levine, D.Z. Childs, B.J. McGill, M.E. Schaepman, B. 
Schmid, P. Spaak, A.P. Beckerman, F. Pennekamp, I.S. Pearse. 2015. The ecological forecast 
horizon, and examples of its uses and determinants. Ecology Letters. 18(7): 587-611. 

Xu, C., E.H. Van Nes, M. Holmgren, S. Kéfi, and M. Scheffer. 2015. Local facilitation may 
cause tipping points on a landscape level preceded by early warning indicators. American 
Naturalist. 186(4): E81-E90. 

Schneider, F.D., S. Kéfi. 2016. Spatially heterogeneous pressure raises risk of catastrophic 
shifts. Theoretical Ecology. 9(2): 207-217. 

Berdugo M., Kéfi S., Soliveres S., Maestre F.T. 2017. Plant spatial patterns identify 
alternative ecosystem multifunctionality states in global drylands. Nature in Ecology and 
Evolution. In press. 
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